National Repository of Grey Literature 17 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Hybrid biopolymer composites for 3D printing applications
Menčík, Přemysl ; Bakoš, Dušan (referee) ; Dzik, Petr (referee) ; Jančář, Josef (advisor)
This dissertation work deals with the thermic and the mechanical behavior of plasticized bio-plastics and bio-composites for the 3D printing applications. The influence of plasticizer chemical structure on thermic and mechanical properties of plasticized polymeric blends from the poly-3-hydroxybutyrate and the poly lactic acid was investigated. Used plasticizers are based on derivative of citric acid. The influence of plasticizers on polymeric matrix and their compatibility was estimated by gear torque rate of melt mixer, respectively rate of plasticizer migration from the material during higher temperature. The plasticizer structure influence on the glass transition temperature and on the kinetics of crystallization of plasticized material was investigated by modulated differential scanning calorimetry. The behavior of material during 3D printing was also observed. Mechanical properties of printed samples, especially their elongation at break, were determined by tensile tests. The largest softening effect was observed using tributylcitrate plasticizer, where the glass temperature decreased by 35 °C and elongation at break increased by 150% compared to non-plasticized reference material. This plasticized polymeric blend showed also sufficient 3D printing properties and was used as the matrix for composites in the next part of this work. Composites were filled by kaolin, limestone, halloysit, fumed silica, talc, magnesium hydroxide and chopped flax fibers. Particle distribution in composites in dependence of used surface treatment of filler was observed by scanning electron microscopy. The influence of composite filler on rheological properties, crystallization kinetics and thermal stability of composites, was observed by viscometry and differential scanning calorimetry. Their mechanical properties and heat deflection temperature were observed on samples prepared by 3D print. Kaolin in composite material showed homogeneous particle distribution and insignificant nucleation effect and influence on thermic stability. Composite filled by kaolin also showed 18% smaller warping during 3D printing compared to non-filled reference. Consequently kaolin was evaluated as suitable inorganic filler for bioplastic composite intended for 3D print and this composite was used in the following part of this thesis. Method of mathematical prediction of Young's modulus was described for composite samples prepared by 3D print. Composites filled by one type of filler – kaolin, or limestone, resp. by combination of both fillers were investigated on the basis of the micromechanic Halpin-Tsai model modified by the semiempiric multiparametric Cerny's equation. Additive and combinational method of Young's modulus evaluation is used for composites with hybrid filling. Deflection of measured and theoretical Young's modulus value of composite filled with kaolin was decreased by established correction from 21% to 1% and for composites filled with limestone from 13% to 9%. In this manner it is possible to predict the Young's modulus of the samples prepared by 3D print.
Innovative wood-based materials
Buriánek, Vlastimil ; Brožovský, Jiří (referee) ; Vaněrek, Jan (advisor)
This bachelor’s thesis deals with the issue of optimizing the modification process for plywood boards. Optimization consists mainly in evaluating different densification methods with different parameters of plasticization and stabilization. Psychical parameters (bulk density, swelling, water absorption) and strength parameters (bending strength, modulus of elasticity) of modified plates were chosen for the evaluation parameters. The practical part involved the verification of two thickening treatments on birch plywood.
Effect of chemical structure of plasticizer on material properties based on polyhydroxybutyrate
Stehnová, Ivana ; Alexy, Pavol (referee) ; Přikryl, Radek (advisor)
This master’s thesis deals with plasticization of poly(3-hydroxybutyrate), polylactid acid and their blend. It explores effect of chemical structure of plasticizer on mechanical properties of this polymer blend and on its diffusion from the polymer blend. Syntheses of plasticizers based on oligomeric polyadipates, citrates, lactate and esters of 2 ethylhexanoic acid with poly(ethyleneglycol) were carried out. Molecular weight distribution of synthesized plasticizers was determined using gel permeation chromatography. Poly(3-hydroxybutyrate), polylactid acid and their blend were plasticized with synthesized and commercial plasticizers. From commercial, chosed plasticizers were based on citrates and ester of 2-ethylhexanoic acid with poly(ethyleneglycol). Thermal stability of selected commercial plasticizers in polylactid acid was studied using thermogravimetry. Diffusion of plasticizers from poly(3-hydroxybutyrate), polylactid acid and their blend during exposure to 110 °C was also investigated. Mechanical properties of prepared blends were tested by tensile test. Almost all used plasticizers showed positive softening effect in blend. The highest elongation at break was detected for the blend with commercial acetyltributylcitrate, where elongation at break reached 328 % relative to 21 % for neat non-plasticized blend.
Rozměrová stabilizace lisovaných dřevěných dílců
Karásek, Lukáš
This diploma thesis deals with wood plasticization using microwave (MW) radiation for wood densification purposes. In this work, the literary sources of the investigated issue were summarized. The experiment was carried out on test samples of white poplar (Populus alba) with dimensions of 190 x 40 x 30 mm. Microwave plasticization was carried out by passing through a microwave laboratory line at a power of 1.5 kW and a conveyor speed of 0.1 m/min. After plasticization, the test samples were compacted in compression molds by a press by 50%. The compacted test samples were stabilized in compression molds at a temperature of 103°C for 7 days. Using heat modification at 180°C and 200°C improved moisture resistance and reduced swelling. The samples were subjected to density profile analysis to evaluate the plasticization quality.
Innovative wood-based materials
Buriánek, Vlastimil ; Brožovský, Jiří (referee) ; Vaněrek, Jan (advisor)
This bachelor’s thesis deals with the issue of optimizing the modification process for plywood boards. Optimization consists mainly in evaluating different densification methods with different parameters of plasticization and stabilization. Psychical parameters (bulk density, swelling, water absorption) and strength parameters (bending strength, modulus of elasticity) of modified plates were chosen for the evaluation parameters. The practical part involved the verification of two thickening treatments on birch plywood.
Influence of formulation factors on the characteristics of terbinafine loaded nanoparticles.
Barák, Vlastimil ; Šnejdrová, Eva (advisor) ; Dittrich, Milan (referee)
CHARLES UNIVERSITY FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY Author: Vlastimil Barák Title of Diploma thesis The influence of formulation factors on the characteristics of terbinafine loaded nanoparticles Supervisor: PharmDr. Eva Šnejdrová, Ph.D. Consultant: Mgr. Juraj Martiška The diploma thesis is focused on biodegradable polymer nanoparticles loaded by terbinafine based on the copolymer of glycolic and lactic acid branched on polyacrylic acid. The nanoprecipitation method was employed, and the influence of formulation factors on nanoparticle characteristics was studied. The following formulation factors were the concentration of the polymer, the amount of terbinafine, and the concentration of surfactant. Nanoparticles of 120 nm to 300 nm were obtained depending on the preparation conditions. The nanoparticle polydispersity was in all cases from 0.080 to 0.230. The prepared nanoparticles were stable, as evidenced by zeta potential values above 38 mV. A positive zeta potential is desirable for dermal and mucosal adhesion in the topical and ocular application of nanoparticles with terbinafine. The amount of polymer used to form nanoparticles has the greatest effect on particle size. With increasing polyester concentration in the internal phase, the size of the...
Terbinafine-loaded biodegradable polymeric systems for topical administration
Pokorná, Tereza ; Šnejdrová, Eva (advisor) ; Dittrich, Milan (referee)
CHARLES UNIVERSITY FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY Author: Tereza Pokorná Title of Diploma thesis Terbinafine-loaded biodegradable polymeric systems for topical administration Supervisor: PharmDr. Eva Šnejdrová, Ph.D. In the diploma thesis the released properties of solid dispersions with terbinafine, based on polyesters of D,L-lactic acid and glycol acid, branched with pentaerythritol and tripentaerythritol are studied. The theoretical part deals with solid dispersions, their classification and methods of preparation, methods of drug dissolution testing, properties, effect, use of terbinafine and preparations containing terbinafine. In the experimental part, solid dispersions were prepared by the melting method. The drug was incorporated into the polyester in the form of a hydrochloride or a base in a concentration of 10 % or 20 %. Some systems were plasticized with 30% triethyl citrate. Thin layers were formulated from solid dispersions, and drug dissolution tests were performed on phosphate buffer pH 7.4 at 37 řC. Assay of terbinafine released was performed spectrophotometrically at 223 nm and ultra-high performance liquid chromatography. Based on the results of this diploma thesis, it can be clearly stated that the suitable carrier of terbinafine...
Acyclovir release from mucoadhesive matrices
Šišáková, Lenka ; Šnejdrová, Eva (advisor) ; Dittrich, Milan (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Technology Student: Lenka Šišáková Supervisor of Diploma thesis: PharmDr. Eva Šnejdrová, Ph.D. Title of Diploma thesis: Aciclovir release from mucoadhesive matrices The aim of this diploma thesis was the study of the mucoadhesive parameters of plasticized oligoester of lactic acid and glycolic acid and 3% mannitol as a branching monomer. Knowledge of dissolution testing of drug release from dosage form, principal theories and mechanisms of mucoadhesion and mucoadhesion testing of adhesive formulation is described in theoretical part. Matrices formed from terpolymer of D,L-lactic acid, glycolic acid branched with mannitol and 5 % aciclovir were examined in the experimental part. Triethylcitrate (TEC), ethylpyruvate (EP), methylsalicylate (MS) and ethylsalicylate (ES) were used as plasticizers. Dissolution test has been done. Hydrated mucin from porcine stomach was used as a base. Phosphate-citrate buffer pH 7.4 was used as a dissolution medium. Dissolution was defined as a quantity of released aciclovir in to the dissolution medium after 15, 30, 60 and 90 minutes. The quantity of the released aciclovir was defined by a spectrophotometry. In 90 minutes was released 43 % of aciclovir from the matrice...
Influence of formulation factors on the characteristics of terbinafine loaded nanoparticles.
Barák, Vlastimil ; Šnejdrová, Eva (advisor) ; Dittrich, Milan (referee)
CHARLES UNIVERSITY FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY Author: Vlastimil Barák Title of Diploma thesis The influence of formulation factors on the characteristics of terbinafine loaded nanoparticles Supervisor: PharmDr. Eva Šnejdrová, Ph.D. Consultant: Mgr. Juraj Martiška The diploma thesis is focused on biodegradable polymer nanoparticles loaded by terbinafine based on the copolymer of glycolic and lactic acid branched on polyacrylic acid. The nanoprecipitation method was employed, and the influence of formulation factors on nanoparticle characteristics was studied. The following formulation factors were the concentration of the polymer, the amount of terbinafine, and the concentration of surfactant. Nanoparticles of 120 nm to 300 nm were obtained depending on the preparation conditions. The nanoparticle polydispersity was in all cases from 0.080 to 0.230. The prepared nanoparticles were stable, as evidenced by zeta potential values above 38 mV. A positive zeta potential is desirable for dermal and mucosal adhesion in the topical and ocular application of nanoparticles with terbinafine. The amount of polymer used to form nanoparticles has the greatest effect on particle size. With increasing polyester concentration in the internal phase, the size of the...
Effect of chemical structure of plasticizer on material properties based on polyhydroxybutyrate
Stehnová, Ivana ; Alexy, Pavol (referee) ; Přikryl, Radek (advisor)
This master’s thesis deals with plasticization of poly(3-hydroxybutyrate), polylactid acid and their blend. It explores effect of chemical structure of plasticizer on mechanical properties of this polymer blend and on its diffusion from the polymer blend. Syntheses of plasticizers based on oligomeric polyadipates, citrates, lactate and esters of 2 ethylhexanoic acid with poly(ethyleneglycol) were carried out. Molecular weight distribution of synthesized plasticizers was determined using gel permeation chromatography. Poly(3-hydroxybutyrate), polylactid acid and their blend were plasticized with synthesized and commercial plasticizers. From commercial, chosed plasticizers were based on citrates and ester of 2-ethylhexanoic acid with poly(ethyleneglycol). Thermal stability of selected commercial plasticizers in polylactid acid was studied using thermogravimetry. Diffusion of plasticizers from poly(3-hydroxybutyrate), polylactid acid and their blend during exposure to 110 °C was also investigated. Mechanical properties of prepared blends were tested by tensile test. Almost all used plasticizers showed positive softening effect in blend. The highest elongation at break was detected for the blend with commercial acetyltributylcitrate, where elongation at break reached 328 % relative to 21 % for neat non-plasticized blend.

National Repository of Grey Literature : 17 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.